
7 Vector spaces

7.1 Sets and fields

A vector space is, loosely speaking, a set of objects that can be multiplied by scalars and added. We
will see a lot of examples later, but at this point I would like first to talk a little about sets and to
clarify why I choose to call some constants in this course “scalars” instead of more familiar “numbers.”
Anyway, every time when I talked about scalars I meant some real numbers.

The most basic structure in mathematics is a set. Since it is most basic, we cannot define it1 in a
proper mathematical sense, and I describe a set as a collections of some objects whose nature is not
important. Usually sets are denoted using the curvy brackets:

A = {a, b, c, d},

which means that set A consists of 4 distinct elements a, b, c, d, note that the order of these elements
is not important. While working with sets, I use the notation a ∈ A to state that element a belongs
to set A and e /∈ A for element e does not belong to A. A very special set is the empty set ∅ = { }
which contains no elements. A subset B of a set A is defined to be a set such that each element of B
is also an element of A, the notation is B ⊆ A. For example, if B = {a, b, c} then B is a subset of the
defined above set A, whereas if B = {a, b, e} then B is not a subset of A. By convention empty set is
a subset of any set: ∅ ⊆ A. It is always true that A ⊆ A for any set A. A set B is called a proper
subset of A, if B ⊆ A and B ̸= A,B ̸= ∅, which means that not every element of A belongs to B. For
example above B is a proper subset of A.

There are several very important sets that have universal notation: N,Z,Q,R,C (another uni-
versal notation for the same sets is N,Z,Q,R,C). They are, respectively,

• the set of natural numbers N = {0, 1, 2, . . .} (some people prefer to start with 1);

• the set of integers Z = {0,±1,±2,±3, . . .};

• the set of rational numbers Q =
{

p
q : p, q ∈ Z, q ̸= 0

}
;

• the set of real numbers R;

• the set of complex numbers C = {x+ iy : x, y ∈ R, i2 = −1}.

You can note that I use a different notation to define sets. In particular, the expression {p/q : p, q ∈
Z, q ̸= 0} means a set of expressions of the form p/q, where (this conditional part is separated by
colon, or, sometimes, by a vertical bar) the expressions p and q are taken from the set of integers, and
I also require that q ̸= 0. Note that I do not give you a definition of the set of real numbers, we will
use them by relying on our intuitive understanding of elements of R. If you never dealt with complex
numbers before — do not worry, I will talk about them separately.

In mathematics in order to introduce a more complicated structure than merely a set it is usual
to take a set and require that something else must be true for the elements of this set. For example,
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very loosely, if I am allowed to add and multiply any two elements of a given set, and I assume that
additive and multiplicative inverses (except for 0 element) exist for any elements then I call such set
with two additional operations a field. I understand that this is a very vague description, but do not
worry about it at this point. The key fact that you must remember is that the set of real numbers R
is a field. Therefore at least for the next month if I say “field F” you can replace it with “the set of
real numbers R.”

Why R is a field? Take any two real numbers x, y ∈ R. Then we know that x+ y ∈ R, xy ∈ R,
there is, e.g., −x such that x+(−x) = 0 and y−1 such that yy−1 = 1, there is numbers 0 and 1 which
have properties that x+0 = x, 1y = y, moreover, both the addition and multiplication are associative
and commutative, moreover, one is distributive with respect to the other.

Exercise 1. Convince yourself that Q is a field, but neither Z nor N is a field.

Now I am prepared to give a definition of the most important in this course mathematical structure
— vector (or linear) space.

7.2 Definition of a vector (or linear) space

Definition 7.1. A vector space over a field F is a nonempty set V with two operations: addition and
multiplication by scalars from F. That is, for any u, v ∈ V and α ∈ F

u+ v ∈ V,

αu ∈ V.

The addition and multiplication by scalars satisfy the following axioms of a vector space:

1. Addition is commutative: u+ v = v + u for all u, v ∈ V ;

2. Addition is associative: u+ (v + w) = (u+ v) + w for all u, v, w ∈ V ;

3. There is a special vector 0 ∈ V such that 0 + v = v for all v ∈ V ;

4. There is a special vector −v ∈ V such that v + (−v) = 0 for all v ∈ V ;

5. The multiplicative identity 1 ∈ F satisfies 1v = v for all v ∈ V ;

6. For all α, β ∈ F (αβ)v = α(βv) for all v ∈ V ;

7. Multiplication by scalars is distributive with respect to vector addition: α(u+ v) = αu+ αv for
all α ∈ F and u, v ∈ V ;

8. Addition of scalars is distributive with respect to scalar multiplication: (α1 + α2)v = α1v + α2v
for all α1, α2 ∈ F and v ∈ V .

The elements of a vector space are called vectors.

Remark 7.2. Again, as I said above, replace the words “field F” with “set of real numbers R” if you
do not feel comfortable talking about abstract fields.

Note that vector space is a set V plus a field. The same set with different fields can give rise to very
different vector spaces, and therefore the correct notation for a vector space is (V,F,+, ·), emphasizing
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that one needs a clear understanding of the nature of set V , field F and specifics of operations + and ·.
In most books, however, a slight abuse of notations is used, people just write “a vector field V ” if
everything else is clear from the context. Words “real vector space V ” mean a vector space over the
field of real numbers. I will use the same conventions in these lectures.

Now when we have a definition of a vector space let us look at some examples.

Example 7.3. The set of real numbers is a real vector space (R,R,+, ·), where the operations of
addition and multiplication are the usual operations.

(To give you a little headache: vector space (R,Q,+, ·) over the field of rational numbers satisfies
all the axioms above, but is fundamentally different from real vector space R. Check the axioms.)

Example 7.4. Recall that Descartes’s product A×B of two sets A = {a1, a2, . . .} and B = {b1, b2, . . .}
is the set A×B of all possible ordered pairs, i.e.,

A×B = {(a, b) : a ∈ A, b ∈ B}.

This immediately can be generalized toA×B×. . .×Z. There is a standard notation A×A×. . .×A = An

for n times product.
Hence for any field F I can form the set Fn. In particular Rn is the set of all ordered n-tuples

(x1, x2, . . . , xn) ∈ Rn, which we so got used to call vectors. But please note that this is just one
(although arguably most important) example of a vector space. Summarizing, Rn is a real vector
space with the operations of addition and multiplication defined componentwise: For all x,y ∈ Rn

x + y = (x1 + y1, x2 + y2, . . . , xn + yn), and for α ∈ R αx = (αx1, αx2, . . . , αxn). Note that for the
vectors in Rn I will always use the bold font notation x,y, consistent with the notation from the first
part of the course. Checking the rest of the axioms is left as an exercise.

Example 7.5. As a particular case of the previous example consider R3, which is our usual Euclidian
vector space in which we live. Each vector (x1, x2, x2) ∈ R3 can be readily visualized as an arrow from
the origin to the point with coordinates (x1, x2, x3) and addition of two vectors and multiplication by
a scalar have simple geometric meaning. While it is very useful to keep this geometric picture in mind
even if we are talking about other vector spaces, remember that, given the definition, I consider all
the vector spaces as algebraic objects, and so almost all of the proofs will be of an algebraic nature.

Example 7.6. The set of matrices Mm×n(R) with real entries over the reals is a real vector space
with the addition and multiplication by scalars defined in the standard way. Please check the axioms.

Example 7.7. Recall that the function f defined as f(x) = a0 + a1x + a2x
2 + . . . + anx

n, where I
assume that all ai ∈ R, is called a polynomial of degree n. To be totally precise I need also specify
the domain of f , let me take it also R, hence my function becomes a function from reals to reals. I
claim that the set of all polynomials over the reals is a vector space, which I denote P. I define the
addition of two polynomials f, g ∈ P as a function h = f + g, which is defined as

h(x) = (f + g)(x) = f(x) + g(x).

Similarly, for any α ∈ R, p = αf if
p(x) = αf(x).

With these definitions one can check that all the axioms hold for my set and hence it is a real vector
space.
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Example 7.8. Let A be an m× n matrix with real entries and x ∈ Rn. Then the set of solutions to
the homogeneous system of linear algebraic equations

Ax = 0

is a vector space. Indeed, let x1 and x2 be 2 solutions, then, by the distributive property of matrix
multiplication

A(x1 + x2) = Ax1 +Ax2 = 0+ 0 = 0,

and hence their sum is also a solution. Similarly, for any α ∈ R

A(αx1) = α(Ax1) = α0 = 0,

and therefore αx1 is also a solution. All axioms hold since each solution is in Rn (think this out!),
but also note that generally not every y ∈ Rn is a solution, and hence in general the set of solutions
is a proper subset of Rn. Such subsets, which also satisfy the definition of a vector space are, quite
naturally, called subspaces.

In general, I can introduce an important notion of a subspace as follows.

Definition 7.9. A subspace W of a vector space V over F is a nonempty subset of V that is closed
under the operations of addition and multiplication by scalars.

Clearly a subspace is a vector space itself (why?). I will denote that W is a subspace of V as
W ⊆ V .

Example 7.10. Convince yourself that the set of all symmetric matrices n×n is a subspace of Mn×n.

A subspace that is different from V itself and {0} is called proper.

Exercise 2. What are the proper subspaces of R2?

The axioms allow a number of immediate consequences, which are so intuitively true for the familiar
real numbers that sometimes it is not clear why we should worry to prove them at all. However, keep
in mind that now we are talking about abstract vector spaces, of which R is just one example, and
do not confuse the introduces objects 0,−v with the usual number 0 and additive inverse. In proving
the following facts one can use only the axioms of a vector space, so it is quite a good exercise in logic
and practicing proofs.

Proposition 7.11. 1. The zero vector 0 ∈ V is unique.

2. The additive inverse −v ∈ V is unique.

3. For 0 ∈ V and α ∈ F I have α0 = 0. Note that on the right hand side 0 ∈ V .

4. For 0 ∈ F and v ∈ V I have 0v = 0. Note that on the right hand side 0 ∈ V .

5. If α ̸= 0 and αv = 0 then v = 0.

6. For all v ∈ V I have −v = (−1)v.
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Proof. I will prove only the first one, leaving the rest as an exercise.
Assume that there are two such vectors 0, 0′ that satisfy axiom 3. I have, by this axiom that

0 + 0′ = 0′ 0′ + 0 = 0.

By axiom 1 0 + 0′ = 0′ + 0 and hence 0 = 0′.
�

The associativity of vector addition allows not to use the parenthesis in the expressions like

v1 + (v2 + v3) + v4 = ((v1 + v2) + v3) + v4 = v1 + v2 + v3 + v4.

I can use this property to define a central notion of a linear combination:

Definition 7.12. Let v1, . . . , vk ∈ V be a collection of vectors from vector space V (note the abuse of
notations here!). A linear combination of v1, . . . , vk is an expression of the form

α1v1 + α2v2 + . . .+ αkvk =

k∑
i=1

αivi ∈ V, αi ∈ F.

It is very important that the number of vectors in the linear combination is finite.
Note that I gave the definition of a linear combination as a collection of vectors, not as a set (I will

use also the word list as a synonym of collection). This allows me to have several identical copies of
the same vector in this collection (in a set all the elements are distinct). At some point I will have to
also introduce an ordered collection (or ordered list) of vectors, where I will have to take into account
also the order of my elements. I do not need to do this now.

Definition 7.13. The set of all vectors that are linear combinations of a collection S = (v1, . . . , vn)
is called the span of S and denoted spanS.

Proposition 7.14. Let v1, . . . , vk ∈ V . Then spanS = span(v1, . . . , vk) is a subspace of V . Moreover,
if S ⊆ W , where W ⊆ V , then spanS ⊆ W .

Exercise 3. Prove the proposition.

Definition 7.15. A collection S of vectors v1, . . . , vk is called linearly independent if the linear com-
bination

α1v1 + . . . αkvk, αi ∈ F

is equal to zero if and only if α1 = . . . = αk = 0.
A collection of vectors is called linearly dependent if there are scalars αi, i = 1, . . . , k, not equal

zero simultaneously, such that
α1v1 + . . . αkvk = 0, αi ∈ F.

Note that any list that contains zero vector or two identical vectors is linearly dependent (why?).
A list that contains only one vector is linearly independent only if this vector is different from zero.
Similarly, (v1, v2) is linearly independent if none of the vectors is a multiple of another.

Here is another restatement of the property to be linearly dependent.
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Proposition 7.16. A collection S is linearly dependent if and only if one of the vectors in S can be
represented as a linear combination of the rest.

Exercise 4. Prove the proposition.

How to determine whether a given list is linearly dependent or independent? It is especially simple
in the case of Rn. So consider S = (v1, . . . ,vk) is given. Here I treat each vector as a column vector.
I form a linear combination and equal it to zero:

α1v1 + . . .+ αkvk = 0.

In more details, denoting vij the i-th coordinate of the j-th vector vj :

α1vi1 + . . .+ αkvik = 0, i = 1, . . . , n.

In other words, this is a system of linear algebraic equations with the matrix A = [v1 | . . . | vk] and
the vector of unknowns α = [α1 . . . αk]

⊤, which I can write as

Aα = 0.

This system always has a trivial solution. If there is a nontrivial solution this would imply that my
list is linearly dependent. Otherwise, it is linearly independent. In particular, using obtained earlier
results, I conclude that if k > n, that is, if the number of variables in my system is bigger than the
number of equations, my list is always linearly dependent because I always have a nontrivial solution.

I can summarize the discussion above as follows.

Proposition 7.17. Let S = (v1, . . . ,vk) be a collection of vectors from Rn. Then this collection is
linearly independent if the row reduced echelon form of matrix A = [v1 | . . . | vk] (i.e., the matrix
composed of vectors from S as columns) has no free variables.

Example 7.18. Consider R3 and the list of four vectors

v1 =

10
1

 , v2 =

12
0

 , v2 =

21
2

 , v4 =

11
3

 .

From the previous I immediately conclude that S = (v1,v2,v3,v4) is linearly dependent. What about
S′ = (v1,v2,v3)? I have now the system

Aα = 0, A = [v1 | v2 | v3].

The matrix is invertible (its determinant is not zero), and hence this list is linearly independent.

Now, having at my disposal the notions of a span and linearly independent set I can define a basis
of a vector space.

Definition 7.19. A basis of a vector space V is a collection B of vectors that is both linearly inde-
pendent and spans V .
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Example 7.20. Consider the standard unit vectors ei ∈ Rn, i.e., vectors with all entries equal 0
except for the i-th coordinate, which is equal to 1. I claim that (e1, . . . , en) is a basis of Rn. Indeed,
from the previous, my matrix A = [e1 | . . . | en] = I and hence the system Aα = 0 has only the
trivial solution and hence this list is linearly independent. For any other vector x = [x1 . . . xn]

⊤ ∈ Rn

I have
x = x1e1 + . . .+ xnen,

and therefore my vectors span Rn.
Generalizing, any list of vectors (v1, . . . ,vn) is a basis of Rn if the matrix A = [v1 | . . . | vn] is

invertible, which is probably easiest to check by calculating the determinant.

Proposition 7.21. Collection B = (v1, . . . , vn) is a basis of V if and only if any vector w ∈ V can be
written in a unique way as a linear combination

w = α1v1 + . . .+ αnvn, αi ∈ F.

Proof. (=⇒). Assume that B is a basis. I need to show that any vector can be represented in a unique
way as a linear combination of vectors from B. Assume, looking for a contradiction, that vector w ∈ V
can be represented in two different ways:

w = α1v1 + . . .+ αnvn,

w = α′
1v1 + . . .+ α′

nvn.

By subtracting these two equalities I get

0 = (α1 − α′
1)v1 + . . .+ (αn − α′

n)vn.

Since B is linearly independent hence the expression above is equal to zero only if αi − α′
i = 0 for all

i, which implies αi = α′
i.

(⇐=) Assume that any vector w ∈ V can be represented as a linear combination of vectors from
B in a unique way. This also must be true, hence, for w = 0:

0 = α1v1 + . . .+ αnvn.

Since this representation is unique, all αi must be zero, otherwise I could have multiplied by β ̸= 1
and got another linear combination. Hence B is linearly independent. The assumption that B spans
V is hidden in the initial assumption, and hence B is a basis. �

Since the scalars in the representation by a linear combination of basis vectors are unique, I can
can call them the coordinates of vector w ∈ V with respect to the basis B. Note that for different
bases I will have different coordinates. In particular, basis B = (e1, . . . , en) is called the standard
basis of Rn for the reason when we say that vector x is [1 2 3]⊤, we actually mean that these are the
coordinates of x with respect to the standard basis.

Here is another basic fact, which I will leave as one more proof exercise.

Proposition 7.22. Let S be a list of vectors from V , and w ∈ V , and let S′ = (S,w), i.e., the list
obtained by adding w to S. Then spanS = spanS′ if and only if w ∈ spanS. Assume that S is
linearly independent, then S′ is independent if and only if w /∈ spanS.

7



Now let me significantly reduce the number of vector spaces, which we will be studying. In
particular, I will consider only finite-dimensional vector spaces.

Definition 7.23. If there is a finite list S that spans V then V is called finite dimensional. In
particular, any vector space with a basis2 is finite dimensional. Vector spaces that are not finite
dimensional are called infinite dimensional.

We will not study infinite dimensional vector spaces, this mostly belongs to the mathematical
subfield called functional analysis.

Exercise 5. Show that (R,Q,+, ·) is an infinite dimensional vector space.

Exercise 6. Show that the vector space of all polynomials is infinite dimensional.

Proposition 7.24. Let V be a finite dimensional vector space. Let S be a finite subset that spans V
and let R be a linearly independent subset of V . Then one can obtain a basis by adding elements from
S to R.

Proof. If S ⊆ spanR then R is a basis by definition. Assume that S is not a subset of spanR.
Then there is an element s ∈ S that is not in spanR, form R′ = (R, s). By proposition 7.22 R′ is
independent. Since S is finite we can only add a finitely many new vectors. Since S spans V we
eventually will have a basis. �

Proposition 7.25. Let V be a finite dimensional vector space. Let S be a finite subset that spans V .
One can obtain a basis of V by deleting elements from S.

Proof. If S is independent we are done. If S is not independent, there is a vector s ∈ S which is
a linear combination of the rest of the vectors in S. Form S′ by dropping s. By Proposition 7.22,
spanS′ = spanS and hence S′ spans V . Since S is finite, this process will end at some point and we
will have a basis. �

Remark 7.26. For those who likes mathematical nitpicking: What is one problem with the proof
above?

Now we are ready to prove the main result of this introductory lecture on vector spaces.

Theorem 7.27. Let S and R be finite subsets of vector space V . Assume that V = spanS and R is
linearly independent. Then then the number of elements in S, which is denoted |S|, is not less than
the number of elements in R, which is denoted |R|:

|S| ≥ |R|.

Proof. I will prove this theorem by contradiction. In particular, I will assume that |S| < |R| and
deduce that in this case R must be dependent.

Say, S = (s1, . . . , sm) and R = (r1, . . . , rn), and m < n by assumption. Since S spans V , each
element of V can be represented as a linear combination of vectors in S, in particular,

r1 = α1s1 + . . .+ αmsm.

2“...with a basis” how I defined it! There are different, more general definitions of a basis.
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Assume without loss of generality that α1 ̸= 0 (we must have at least one non-zero αi and always can
call it α1 after reindexing the elements). Hence I can write that

s1 = α−1
1 r1 − α−1α2s2 − . . .− α−1αmsn.

Since, by the above, s1 ∈ span(r1, s2, . . . , sm) then V = span(r1, s2, . . . , sm). The idea is keep replacing
s2, s3, . . . one by one with r2, r3, . . .. For example, since r2 ∈ V , I have

r2 = β1r1 + β2s2 + . . .+ βmsm.

Moreover, I know that at least one of the constants β2, . . . , bm is non-zero, since, if I assume that
they all zero, then I would have a linear relation between the elements of a linearly independent list,
a contradiction. I can reorder my elements in such a way so that non-zero β2 corresponds to s2, and
hence I have

s2 = β−1
2 r2 − β−1

2 β1r1 − . . .− β−1
2 βmsm.

This means that now I have the list (r1, r2, s3, . . . , sm), which spans V . I can continue this process
(an accurate argument requires induction) and get at the last step that (r1, . . . , rm) spans V , but
since m < n, hence there should be some vectors left in the list R, which can be represented as
linear combinations of (r1, . . . , rm), therefore R is not linearly independent, I get a contradiction and
conclude that m ≥ n. �

Theorem 7.28. Let V be a finite dimensional vector space. Then any two bases of V have the same
finite number of elements.

Proof. Since by definition there is a finite spanning list, and by the previous theorem the number
of elements in this list must not be less than the number of elements in a basis, therefore any basis
is finite. Now, let B1 and B2 be two bases. By the previous theorem |B1| ≤ |B2| and |B2| ≤ |B1|.
Therefore,

|B1| = |B2|.

�

So, concluding and summarizing several results: Any basis of a finite dimensional vector space
has the same number of vectors; any spanning list has not fewer elements than a basis; any linearly
independent list has no more elements than a basis. A spanning list is a basis if and only if it has the
same number of elements as a basis; linearly independent list is a basis if and only if it has the same
number of elements as a basis.

Exercise 7. Prove what has not been proved in the last paragraph.

Finally,

Definition 7.29. The dimension, dimV , of a finite dimensional vector space V is the number of
vectors in a basis.

Proposition 7.30. If W is a subspace of a finite dimensional vector space V , then W is finite
dimensional, and dimW ≤ dimV . Moreover, dimW = dimV if and only if W = V .

Exercise 8. Prove the last proposition.
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Exercise 9. Let W1 ⊆ V and W2 ⊆ V be two subspaces of a vector space V . Show that their
intersection W1

∩
W2, that is, the set of all the vectors that belong both to W1 and W2, is also a

subspace. Show that their union is not necessarily a subspace.

Exercise 10. Let W1 ⊆ V and W2 ⊆ V be two subspaces of a vector space V . I define W1 +W2 as
the set of all possible vectors of the form

w1 + w2,

where w1 ∈ W1 and w2 ∈ W2. Show that W1 +W2 is a subspace of V .

Exercise 11. Let W1 +W2 = V and W1
∩

W2 = {0}. Prove that any vector v ∈ V can be uniquely
represented as

v = w1 + w2,

where w1 ∈ W1, w2 ∈ W2.

Exercise 12. Let W1 ⊆ V and W2 ⊆ V be two subspaces of a finite dimensional vector space V .
Prove that

dimW1 + dimW2 = dim(W1

∩
W2) + dim(W1 +W2).
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